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Abstract

This paper analyzes the interactions between the protocol stack

(TCP/IP or iWARP over 10-Gigabit Ethernet) and its multicore en-

vironment. Specifically, for host-based protocols such as TCP/IP,

we notice that a significant amount of processing is statically as-

signed to a single core, resulting in an imbalance of load on the

different cores of the system and adversely impacting the perfor-

mance of many applications. For host-offloaded protocols such

as iWARP, on the other hand, the portions of the communication

stack that are performed on the host, such as buffering of mes-

sages and memory copies, are closely tied with the associated pro-

cess and hence do not create such load imbalances. Thus, in this

paper, we demonstrate that by intelligently mapping different pro-

cesses of an application to specific cores, the imbalance created

by the TCP/IP protocol stack can be largely countered and ap-

plication performance significantly improved. At the same time,

since the load is a better balanced in host-offloaded protocols such

as iWARP, such mapping does not adversely affect performance,

thus keeping the mapping generic enough to be used with multiple

protocol stacks.

1 Introduction

Multicore architectures have recently established them-

selves as a major step forward for high-end computing

(HEC) systems [10, 18]. Their increasing popularity is of

particular importance given the growing scales and capabil-

ities of modern HEC. The commodity market already has

quad-core architectures from Intel [5] and AMD [1]. Pro-

cessors with larger core counts, such as the IBM Cell [2],

Sun Niagara [13], and Intel Terascale [6], are also gaining

in popularity.

On the other hand, high-performance networks such as 10-

Gigabit Ethernet (10GE) [17, 16, 15], Myrinet [19], and In-

finiBand (IB) [4] are increasingly becoming an integral part
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of large-scale systems with respect to scalability and perfor-

mance. While all these networks aim at achieving the best

communication performance, each network splits its proto-

col stack differently with respect to the amount of process-

ing that is done on the host and the amount that is done on

the network interface card (NIC). For example, IB performs

almost all of its processing on the NIC. Myrinet (specif-

ically, Myri10G) performs almost all of its processing on

the host. The 10GE family has NICs with different of-

fload capabilities (e.g., regular 10GE, TCP-offloaded 10GE,

iWARP-offloaded 10GE). Thus, depending on the amount

of processing on the host, it is critical that we understand its

interaction with applications running in multicore environ-

ments.

In this paper, we study such interaction using two high-

performance communication stacks: 10GE with host-based

TCP/IP and 10GE offloaded with iWARP. In the first part

of the paper, we provide detailed analysis of these stacks on

multicore systems. We notice that, for host-based TCP/IP, a

significant amount of processing is statically fixed to a sin-

gle core in the system, resulting in processing imbalance

and consequently adverse effects on applications in two pri-

mary aspects. First, the effective capability that the over-

loaded core can provide to the application is reduced. Sec-

ond, the data that is processed by the protocol stack is now

localized to this core rather than to the process to which it

belongs, thus resulting in cache misses for the process. For

iWARP, however, most of the protocol processing is done

by the NIC. The portions of the communication stack that

are performed by the host, such as data buffering and mem-

ory copies, are done by the application process and its as-

sociated libraries, thus localizing it to the process itself and

resulting in reduced cache misses.

This situation leads us to believe that for host-based TCP/IP,

based on which process is mapped to which core, applica-

tion performance can vastly vary. On the other hand, for

host-offloaded protocol stacks, such mapping would show

no difference in performance. Thus, in the second part of

the paper, we utilize this analysis to intelligently map pro-

cesses to cores for various applications. Our experiments

reveal significant improvement in performance for some

applications based on such mapping when using TCP/IP,

while showing minimal performance difference when using

iWARP. Hence, we conclude that an intelligent mapping of

processes to cores can significantly improve application per-
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formance for TCP/IP while retaining the generality of the

application by not affecting its performance for other host-

offloaded protocol stacks.

2 Background

In this section, we present an overview of multicore archi-

tectures and the NetEffect 10GE iWARP network adapters.

2.1 Overview of Multicore Architectures

On-chip hardware replication has been around for many

years, providing the CPU with parallelization capabilities

for various code segments. Multicore architectures extend

these by replicating the microprocessing unit itself (referred

to as cores), together with additional portions of the on-chip

hardware. While these architectures are similar to multipro-

cessor systems, they differ in two primary aspects. First,

not all of the CPU hardware is replicated. For example, in

the Intel architecture, multiple cores on the same die share

the same L2 cache, issue queues, and other functional units.

Thus, if a core is already using one of these shared hardware

resources, another core that needs this resource has to stall.

Second, core-to-core data sharing is much faster than the

processor-to-processor case because the cores reside on the

same die, making cache coherency simpler and faster, and

avoiding the die pin when communicating between cores.

2.2 Overview of NetEffect 10GE iWARP

Figure 1 shows the architecture of the NetEffect NE010

10GE iWARP NIC. The NE010 offloads the entire iWARP

and TCP/IP stacks to the NIC. Hence, in theory, these

adapters can support all versions of the 10GE network fam-

ily, that is, regular 10GE, TCP, and iWARP offload engines.

However, the offloaded TCP/IP stack is not directly exposed

to applications, and hence these adapters allow applications

to use them only as either regular 10GE or iWARP offload

engines.

The NE010 consists of a protocol engine integrating

iWARP, TOE, and regular Ethernet logic in hardware using

a structured ASIC. It also consists of a RAM-based trans-

action switch, which operates on in-flight data, and a local

memory controller to access NIC memory (256 MB DDR2)

for buffering non-iWARP connections. These adapters

support a number of programming interfaces, including a

hardware-specific verbs and the OpenFabrics verbs inter-

faces. These adapters also support a Message Passing In-

terface (MPI) [7] implementation that is a derivative of

MPICH2.

3 TCP/IP and iWARP Processing

In this section, we describe the protocol processing done by

TCP/IP and iWARP.

3.1 TCP/IP Protocol Processing

TCP/IP performs many aspects of communication, includ-

ing data buffering, message segmentation and routing, en-

suring data integrity (using checksum) and communica-

tion reliability. The processing of host-based TCP/IP can

broadly be broken into two components: synchronous and

asynchronous. The synchronous component refers to the

portions of the stack that are performed either in the con-

text of the application process or in the context of the kernel

thread corresponding to the application process (e.g., check-

sum on the sender side, data copies). The asynchronous

component, on the other hand, refers to the portions of the

stack that are performed in the context of a completely dif-

ferent kernel thread or kernel tasklet (e.g., reliability, data

reception, and, in some cases, the actual data transmission).

Let us consider the following example to better understand

TCP/IP processing. Suppose the sender wants to send a

64 KB message. On a send() call, this data is copied

into the sender socket buffer and segmented into MTU-

sized chunks, and the checksum for each chunk is calcu-

lated. Now suppose the TCP window permits the sender to

transmit 32 KB of data. The first 32 KB of the buffered

data is handed over to the NIC after which the send() re-

turns. The processing so far is done during the send()

and thus is a part of the synchronous component. After the

send() returns, the application can go ahead with its other

computation. At this time, suppose the receiver sends an

acknowledgment of its data receipt. The sender NIC raises

a hardware interrupt to awaken a kernel thread to handle it.

The kernel thread sees this acknowledgment and initiates

the transfer for the remaining data. Since this part of the

processing is done independently from the application, it is

referred to as the asynchronous component. On the receiver,

the synchronous and asynchronous components are similar.

The important aspect is that the asynchronous component is

independent of the application processes. The processing of

a asynchronous kernel thread is common for the entire sys-

tem. Further, in the x86 architecture, hardware interrupts

are statically mapped to a single core in the system. There-

fore, the kernel process that handles this interrupt also gets

mapped to a single core. That is, irrespective of how many

processes in the system are performing communication, the

asynchronous component of these communications is stati-

cally handled by a single core in the system.

3.2 iWARP Processing

iWARP is a relatively new initiative by the Internet En-

gineering Task Force (IETF) [3] and the RDMA Consor-

tium (RDMAC) [12]. It implements most of the protocol

processing relevant to transmission and reception of data

on the network hardware. However, aspects such as data

buffering and memory copies of the data to final applica-

tion buffers are not handled by it – upper layers residing on

top of iWARP are expected to handle them. For example,
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Figure 1: NetEffect iWARP NIC Architecture

in the case of MPI, the incoming data is received in a zero-

copy manner into intermediate temporary buffers and later

copied into the final buffers by MPI.

The overall communication stack can be broken into two

portions. The actual transmission and reception of data,

that is performed by iWARP, is completely implemented on

hardware and is not associated with any specific processing

core in the system. The remaining communication aspects

(message buffering and data copies) are synchronously han-

dled by communication libraries such as MPI when the ap-

plication makes a send or receive call. Thus, there is no

application independent component in the communication

processing of host-offloaded protocol stacks such as iWARP

and consequently no reason to statically allocate any pro-

cessing to a fixed core in the system.

4 Experimental Testbed

We used two cluster setups in this study.

Setup A: Two Dell Poweredge 2950 servers, each equipped

with two dual-core Intel Xeon 2.66 GHz processors. Each

server has 4 GB of 667 MHz DDR2 SDRAM. The four

cores in each system are organized as cores 0 and 2 on pro-

cessor 0, and cores 1 and 3 on processor 1. Each processor

has a 4 MB shared L2 cache. The operating system used is

Fedora Core 6 with kernel version 2.6.18.

Setup B: Two custom-built, dual-processor, dual-core

AMD Opteron 2.55 GHz systems. Each system has 4 GB

of DDR2 667 MHz SDRAM. The four cores in each system

are organized as cores 0 and 1 on processor 0, and cores

2 and 3 on processor 1. Each core has a separate 1 MB

L2 cache. Both machines run SuSE 10 with kernel version

2.6.13.

Network and Software: Both setups used the NetEf-

fect 10GE iWARP adapters installed on a x8 PCI-Express

slot and connected back-to-back. For TCP/IP evaluation,

we used the MPICH2 (version 1.0.5p4) implementation of

MPI. For iWARP, we used a derivative of MPICH2 by Net-

Effect (based on MPICH2 version 1.0.3) that was built by

using the NetEffect verbs interface.

5 Microbenchmark-based Analysis

In this section, we analyze the interactions of the TCP/IP

and iWARP stacks over 10GE in multicore systems. Specif-

ically, we analyze different microbenchmarks to understand

how they are affected in a multicore environment. We

present analysis of MPI bandwidth in Section 5.1 and MPI

latency in Section 5.2. Both these benchmarks are taken

from the OSUMPI microbenchmark suite. Each benchmark

was measured at least five times and the average of all runs

is reported.

5.1 Analysis of MPI Bandwidth

Figures 2(a) and 2(b) show the MPI bandwidth achieved by

TCP/IP and iWARP on setup A, when scheduled on each

of the four cores in the system. Both the sender and the re-
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Figure 2: MPI Bandwidth (Setup A): (a) TCP/IP and (b) iWARP
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Figure 3: MPI Bandwidth (Setup B): (a) TCP/IP and (b) iWARP

ceiver process are scheduled on the same core number, but

on different servers. In this experiment, the sender sends a

single message of size S to the receiver many times. On re-

ceiving all the messages, the receiver sends back one small

message to the sender informing that it has received the

messages. The sender measures the total time and calcu-

lates the amount of data it had transmitted per unit time.

Figure 2(a) shows several trends for TCP/IP. First, when the

communication process is scheduled on core 0, bandwidth

performance barely reaches 2 Gbps. Second, the benchmark

performs slightly better when the communication process is

scheduled on either core 1 or core 3, that is, cores on the

second CPU. In this case, the benchmark achieves about 2.2

Gbps. Third, the benchmark achieves the best performance

when the communication process is scheduled on core 2,

that is, the second core of the first CPU. In this case, the

benchmark achieves about 3 Gbps bandwidth, about 50%

better than when the processes are scheduled on core 0. On

the other hand, Figure 2(b) shows that, for iWARP, there is

no impact on the performance, irrespective of which core

the communication process is scheduled on.

Figures 3(a) and 3(b) show the MPI bandwidth results on

setup B for TCP/IP and iWARP. The trends observed in

these figures are very similar to those observed in setup A.

That is, for TCP/IP, the interrupt processing core on the first

CPU (core 1 in this case) achieves low performance, the

cores on the second CPU (cores 2 and 3) achieve moderate

performance, and the second core of the first CPU (core 0)

achieves the best performance. For iWARP, all core map-

pings achieve the same performance.

These results indicate that the interaction of the TCP/IP pro-

tocol stack with the multicore architecture can have signif-

icant impact on performance. To further understand these

results, we analyze in Sections 5.1.1 and 5.1.2, the interrupt

processing and L2 cache misses of the system while running

this benchmark. Since both setups A and B show similar

performance behavior, we look only at results on setup A.

5.1.1 Interrupt Analysis

To measure the interrupts generated by TCP/IP during

the execution of the MPI bandwidth benchmark, we

used the Performance Application Programming Interface

(PAPI) [11] library (version 3.5.0). Figure 4 (a) illustrates

the number of interrupts per message observed during the

execution of the MPI bandwidth benchmark, which was

scheduled on the different cores. As shown in the figure,

core 0 gets more than 99% of all the interrupts. This ob-

servation is in accordance with the description of the asyn-

chronous component in Section 3. That is, the hardware

interrupt and the asynchronous component of the TCP/IP
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Figure 5: MPI Latencies with TCP/IP: (a) Small Messages and (b) Large Messages

stack are statically mapped to a single core in the system.

Based on the large number of interrupts, coupled with the

processing of the asynchronous component of the TCP/IP

stack by core 0, its capability to perform application pro-

cessing is drastically reduced. This results in reduced per-

formance of the MPI bandwidth benchmark when the appli-

cation process is scheduled on this core.

5.1.2 Cache Analysis

As described in Section 2.1, multicore architectures provide

opportunities for core-to-core data sharing either through

shared caches (e.g., Intel architecture) or separate on-chip

caches with fast connectivity (e.g., AMD architecture). In

the case of TCP/IP (as described in Section 3.1), when inter-

rupt processing is performed by a particular core, the data is

fetched to its cache to allow for data-touching tasks such as

checksum verification. Thus, if the application process per-

forming the communication is scheduled on the same CPU

but a different core, it can take advantage of the fast core-to-

core on-die communication. In the Intel architecture, since

the L2 cache is shared, we expect this to be reflected as sub-

stantially fewer L2 cache misses.

We verify our hypothesis by using PAPI to measure L2

cache misses. Figure 4 (b) shows the percentage difference

of number L2 cachemisses observed on each core compared

to that on core 0. We observe that cores 0 and 2 (processor

0) have significantly lower L2 cache misses than do cores

1 and 3 (processor 1).1 These cache misses demonstrate

the reason for the lower performance of the MPI bandwidth

benchmark when the process is scheduled on either core 1

or core 3, as compared to when it is scheduled on core 2.

5.2 MPI Latency Evaluation

Figure 5 illustrates the MPI latency achieved when sched-

uled on each of the four cores in the system for TCP/IP.

Again, both the sender and receiver processes are scheduled

on the same core number but on different servers. In this

experiment, the sender transmits a message of size S to the

receiver, which in turn sends back another message of the

same size. This is repeated several times and the total time

averaged over the number of iterations – this gives the av-

erage round-trip time. The ping-pong latency reported here

is one-half of the round-trip time. To better illustrate the re-

sults, we have separated them into two groups. Figures 5(a)

and 5(b) show the measurements for small and large mes-

sages, respectively.

Figure 5(a) shows that the best performance is achieved

1The percentage difference in cache misses drops with larger message

sizes because the absolute number of cache misses on the cores increases

with message size as they cannot fit in the cache.
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when the communication process is on core 2. This is simi-

lar to the bandwidth test and is attributed to the better cache

locality for the process (Section 5.1.2). When the commu-

nication process is scheduled on core 0, however, there is

only a slight drop in performance, unlike the MPI band-

width results. When the communication process is sched-

uled on cores 1 or 3, we see that the performance achieved

is the worst.

The difference in the performance of core 0 for the latency

test compared to the bandwidth test is attributed to the syn-

chronous nature of the benchmark. That is, for small mes-

sages, data is sent out as soon as send() is called. By the

time the sender receives the pongmessage, the TCP/IP stack

is idle (no outstanding data) and ready to transfer the next

message. On the receive side, when the interrupt occurs, the

application process is usually waiting for the data. Thus,

the interrupt does not interfere with other computation and

hurt performance. Also, core 0 has the data in cache after

the protocol processing; thus, if the application is scheduled

on the same core, it can utilize this cached data, resulting

in higher performance for core 0 as compared to cores 1

and 3. For large messages, however, the benchmark is no

longer synchronous. That is, as the data is being copied

into the sockets buffer, the TCP/IP stack continues to trans-

mit it. Thus, both the asynchronous kernel thread (which is

always statically scheduled on core 0) and the application

thread might be active at the same time, resulting in loss of

performance. This is demonstrated in Figure 5(b).

Figures 6(a) and 6(b) show the MPI latencies for small and

large messages, respectively, with iWARP. Similar to the

MPI bandwidth benchmark, it can be observed that perfor-

mance is not affected by the core on which the communi-

cating process is scheduled.

6 Mapping Processes to Specific

Cores

In this section, we utilize the analysis provided in Section 5

to identify the characteristics of the different processes of

real applications and appropriately map them to the best

core. We perform such analysis on two applications, GRO-

MACS and LAMMPS, described in Sections 6.1 and 6.2.

6.1 GROMACS Application

Overview: GROMACS [14], developed at Groningen Uni-

versity, is primarily designed to simulate the molecular

dynamics for millions of biochemical particles. A topol-

ogy file consisting of the molecular structure is distributed

across all active nodes. The simulation time is broken into

many steps, and performance is reported as the number of

nanoseconds per day of simulation time. For our measure-

ments, we use the GROMACS LZM application.

Analysis and Evaluation: Several different combinations

of process-to-core mappings are possible. Some of these

Table 1: Process-Core Mappings Used in GROMACS LZM

Machine 1 Machine 2

Process Ranks Process Ranks

Core Core Core Core Core Core Core Core

Mapping 0 1 2 3 0 1 2 3

A 0 4 2 6 7 3 5 1

A’ 6 4 2 0 7 3 5 1

B 0 2 4 6 5 1 3 7

B’ 2 0 4 6 5 1 3 7

combinations perform worse as compared to the others. To

understand the reasoning behind this, we analyze two such

combinations (combinations A and B in Table 6.1). We pro-

file the GROMACS LZM application using mpiP [9] and

MPE [8] to get statistical analysis of the time spent in dif-

ferent MPI routines. Figure 7(a) shows the application time

breakdown when running GROMACS with combination A.

To simplify our analysis, we show the main components of

computation and MPI Wait, while clubbing the other MPI

calls into a single component. We observe several trends

from the graph. First, process 0 (running on core 0) spends a

substantial amount of time in computation (more than 60%)

while spending minimal amount of time in MPI Wait. At

the same time, processes 6 and 7 spend a large amount of

time (more than 40%) waiting. That is, a load imbalance

occurs in the application.

To rectify this load imbalance, we swap the core mappings

for processes 0 and 6 to form combination A’ (Table 6.1). In

this new combination, since process 6 is idle for a long time

(in MPI Wait), we expect the additional interrupts and pro-

tocol processing on the core to avoid affecting this process

too much. We notice, however, that process 7 has a large

idle time inspite of being scheduled on core 0 of the second

machine. We attribute this to the inherent load imbalance

in the application. Figure 7(b) shows the application time

breakup with combination A’. We notice that the load im-

balance is less in this new combination. Figure 8 shows the

overall performance of GROMACS with the above process-

core mappings. We observe that the performance of the in-

telligently scheduled combination (A’) is nearly 11% better

as compared to combinationA. The trend is similar for com-

bination B as well.

We also notice that, with iWARP, the performance on all

core mappings is similar. The maximum standard devia-

tion of the performances with iWARP is only 1.9%. This

demonstrates that with an intelligent mapping of processes

to cores, we can significantly improve the performance of

the application when executing on TCP/IP, while not ad-

versely affecting its performance on host-offloaded proto-

cols such as iWARP, thus maintaining generality.

6



10

15

20

25

La
te

n
cy

 (
u

se
c)

Core 0 Core 1

Core 2 Core 3

0

5

10

0 1 2 4 8 16 32 64 128 256 512 1K 2K 4K

La
te

n
cy

 (
u

se
c)

Message size (bytes)

3000

4000

5000

6000

La
te

n
cy

 (
u

se
c)

Core 0 Core 1

Core 2 Core 3

0

1000

2000

128K 256K 512K 1M 2M 4M

La
te

n
cy

 (
u

se
c)

Message size (bytes)

Figure 6: MPI Latencies with iWARP: (a) Small Messages and (b) Large Messages

50%

60%

70%

80%

90%

100%

Computation MPI_Wait Other MPI calls

0%

10%

20%

30%

40%

0 1 2 3 4 5 6 7
Process ranks

50%

60%

70%

80%

90%

100%

Computation MPI_Wait Other MPI calls

0%

10%

20%

30%

40%

0 1 2 3 4 5 6 7
Process ranks

Figure 7: GROMACS application time split up with TCP/IP (a) Combination A and (b) Combination A’

18

20

22

24

26

n
s/
d
a
y

Combination A

Combination A'

Combination B

Combination B'

10

12

14

16

Sockets iWARP

n
s/
d
a
y

Figure 8: GROMACS LZM Protein System Application

6.2 LAMMPS Application

Overviews: LAMMPS [20] is a molecular dynamics sim-

ulator developed at Sandia National Laboratories. It uses

spatial decomposition techniques to partition the simulation

domain into small 3D subdomains, one of which is assigned

to each processor. This strategy allows it to run large prob-

lems in a scalable way wherein both memory and execution

speed linearly scale with the number of atoms being sim-

ulated. We use the Lennard-Jones liquid simulation with

LAMMPS scaled up 64 times for our evaluation.

Table 2: Process-Core Mappings Used in LAMMPS Appli-

cation

Machine 1 Machine 2

Process Ranks Process Ranks

Core Core Core Core Core Core Core Core

Mapping 0 1 2 3 0 1 2 3

A 2 0 4 6 1 3 5 7

A’ 0 2 4 6 1 3 5 7

B 0 4 2 6 7 3 5 1

B’ 6 4 2 0 7 3 5 1

Analysis and Evaluation: Figure 11(a) illustrates the

splitup in the communication time spent by LAMMPS

while running on processes-to-cores combination A (Ta-

ble 6.2). As shown in the figure, processes 1 and 2 (which

run on core 0) spend about 70% of the communication time

in MPI Wait while the other processes spend about 80% of

the communication time in MPI Send. This result is com-

pletely counterintuitive as compared to GROMACS: we ex-

pect the processes not running on core 0 to spend a long

time waiting, while processes running on core 0 to perform

a lot of computation.
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Figure 9: LAMMPS Communication Pattern (8 processes)

To understand this behavior, we further profile the com-

munication code. We observe that all processes regularly

exchange data with only three other processes (Figure 9)

and that the sizes of the messages exchanged are quite large

(around 256 KB). Figure 10 illustrates the communication

timeline for LAMMPS. As shown in the figure, process X

is running on the slower core (which receives most of the

interrupts), while process Y is running on a different core.

We describe the communication timeline in different steps

(broken up in the figure using dotted horizontal lines).

Step 1: Initially, both processes post receive buffers using

MPI Irecv() and send data to each other using MPI Send().

On MPI Send(), data is copied into a temporary MPI send

buffer. As the data is being copied, if there is space in

the TCP/IP socket buffer, this data is also handed over to

TCP/IP. If not, the data is buffered in the MPI temporary

send buffer till more space is created.

Step 2: After returning from MPI Send(), all processes call

MPI Wait() to wait till all the data from their peer process

has been received. While waiting for data to be received, if

any data is buffered in the MPI temporary send buffer and

has not been sent out yet, MPI attempts to send that out

as well. Now, if the receiver is able to read the data fast

enough, the TCP/IP socket buffer is emptied quickly and

the sender can hand over all the data to be sent to TCP/IP.

If the receiver is not able to read the data fast enough, how-

ever, the TCP/IP socket buffer fills up and all the data to

be transmitted cannot be handed over to TCP/IP before re-

turning from MPI Wait(). In our example, since process X

is slower, it does not read the incoming data fast enough,

thus causing process Y to return from MPI Wait() without

handing over all the data to be sent to TCP/IP.

Step 3: Once out of MPI Wait(), process Y goes ahead with

its computation. However, since it did not hand over all the

data that needs to be transmitted to TCP/IP, some of the data

is left untransmitted. Thus, process X cannot return from its

MPI Wait() and has to wait for process Y to flush the data

out.

Step 4: After completing the computation, when process

Y tries to send the next chunk of data, the previous data is

flushed out. Process X receives this flushed-out data, returns

from MPI Wait(), and goes ahead with its computation.

Now, since process X is not actively receiving data (since

it is performing computation), the TCP/IP socket buffer,

and eventually process Y’s MPI temporary send buffer, gets

filled up. At this stage, since process Y does not have

enough buffer space to copy the application data, it has to

wait before returning from MPI Send().

Step 5: After process X returns from its computation, when

it calls MPI Wait(), it starts receiving data allowing process

Y to complete its MPI Send().
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Figure 12: LAMMPS Performance

From the above description, we can see that the processes

X and Y are running out of phase. That is, when process

Y performs computation, X waits in MPI Wait and when X

performs computation, process Y waits in MPI Send. This

out-of-phase behavior causes unnecessary waits, resulting

in loss of application communication performance. We note

that this behavior happens because the effective capability

of the cores on which run processes X and Y execute do not

match. To rectify this situation, we need only ensure that the

cores that execute processes X and Y match in capability.

In Table 6.2, for combination A, we see that swapping pro-

cesses 0 and 2 gives us the desired effect (note that each pro-

cess communicates with only one process outside its node).

Figure 11(b) demonstrates that this new intelligent combi-

nation can dramatically reduce the imbalance.

Figure 12 shows the communication performance of

LAMMPSwith the above core mappings. We observe about

50% performance difference between combinations A and

A’ as well as combinations B and B’. Similar to GRO-

MACS, there is no performance difference while running

LAMMPS with iWARP.

8



x14x15 y14 y15
x13

x11

y13
y11

y12

y15
y13

x15 x14y11

y14

y12x12

MPI_Send returns, but 

not all packets sent out 

(Process X cannot read 

fast enough)

MPI_Send completes. 

Socket recv buffer full.

Y15 not sent out 

by process Y

Remaining packets 

not sent until next 

MPI call

Next MPI_Send

Process X

(running on slower core)

MPI_SendMPI_Send

Network

MPI 

Buffer

Socket 

send 

buffer

Application Buffer

Socket recv buffer

MPI_Wait

(waiting for remaining 

pkts)

Compute Phase

Process Y

MPI 

Buffer

Socket 

send 

buffer

Socket recv buffer

Application Buffer

y15

y21 y22 y24 y25y23

y23
y21 y22

y24 y25

y15y14

Next MPI_Send

Application buffer  

not free as socket 

buffers are full

y25y24

MPI_Wait receives 

data

Application buffer 

flushed and 

MPI_Send returns.

Compute Phase
MPI_Send waits

(application buffer 

is not yet free)

Figure 10: LAMMPS Timeline

50%

60%

70%

80%

90%

100%

MPI_Wait MPI_Send Other MPI calls

0%

10%

20%

30%

40%

0 1 2 3 4 5 6 7

Process ranks

50%

60%

70%

80%

90%

100%

MPI_Wait MPI_Send Other MPI calls

0%

10%

20%

30%

40%

0 1 2 3 4 5 6 7
Process ranks

Figure 11: LAMMPS Communication Time Split Up with TCP/IP: (a) Combination A (b) Combination B

7 Conclusions and Future Work

Multicore architectures have been growing in popularity as

a significant driving force for high-end computing (HEC).

At the same time, high-performance networks such as 10-

Gigabit Ethernet (10GE) have become an integral part of

large-scale HEC systems. While both of these architec-

tural components have been vastly studied independently,
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no work has focused on the interaction between these com-

ponents. In this paper, we studied such interaction using two

protocol stacks of 10GE, namely, TCP/IP and iWARP. We

first utilized microbenchmarks to understand these interac-

tions. Next, we leveraged the lessons learned from this anal-

ysis to demonstrate that intelligently mapping processes to

cores based on simple rules can achieve significant improve-

ments in performance. Our experimental results demon-

strated more than a twofold improvement for the LAMMPS

application. For future work, we plan to provide a system

daemon that dynamically picks appropriate process-to-core

mappings based on the behavior of the processes.
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